首页 > 教育 > 师资队伍 > 药学院 > 教研系列 > 正文

白净卫, PhD

研究员,博士生导师

E-mail: jingwbai@mail.tsinghua.edu.cn

Tel: 010-62789815

基因测序、纳米器件、生物传感、单分子检测、纳米孔器件

  • 个人简历

  • 研究方向

  • 荣誉和奖励

  • 代表论文

白净卫博士本科就读北京大学化学系,2011年6月毕业于美国加州大学洛杉矶分校获材料学博士学位。 2011.6-2013.6,在IBM 沃森实验室从事博士后研究,后受聘于美国基因测序技术公司Illumina Inc. 从事研发工作。2016加入清华大学药学院任特聘研究员,博士生导师。攻读博士期间结合前沿半导体工艺完成了石墨烯纳米筛结构和超高频石墨烯射频晶体管等原创性科研成果,为石墨烯电子器件领域进展做出了突出贡献。博后期间在IBM前沿半导体制成技术的基础上拓展纳米制备技术在单分子生物传感器方面的应用,领导了基于“Top down”技术路线制备固态纳米孔的研究工作。之后加入了基因测序技术领域处于世界领先地位的Illumina Inc.,负责研发基于纳米孔构造和纳米线晶体管原理的新一代基因测序技术。已获得授权十余项项。在Nature、Nature Nanotechnology,Nano Letters, PNAS等期刊上发表论文三十余篇。回到清华大学药学院至今作为课题负责人已获得三项科技部重点项目资助,领导基于纳米孔的新一代基因测序技术的研发。


新一代DNA测序技术是基于单分子连续测序的策略,针对于核酸分子链上的碱基序列进行逐个快速识别和测定。而基于纳米孔技术的第四代测序技术可直接对DNA、RNA分子进行直接测序,测序片段可到数万以上碱基、仪器尺寸小、测序速度快、文库制备简单等优势,在优化现有测序结果和拓展测序技术应用领域方面形成“互补”,在病原体微生物监测、基因组结构变异、表观遗传修饰、蛋白测序等方面具有十分重要的应用前景。

本课题组主要研究基于纳米孔测序平台的底层技术开发,以及单分子长度长测序技术的临床应用研究:

1) 纳米孔测序核心技术:主要研究核心纳米孔蛋白的进化和单分子控速策略。通过复合的生物大分子动力蛋白,研究核酸、多肽、多糖等线性生物分子在纳米孔中的移动和相互作用,开发新型纳米孔测序方法和蛋白互作检测技术。

2) 高通量长度长测序技术的临床应用:主要研究适应于纳米孔长度长测序的建库方法,应用于单细胞基因组长度长测序、快速靶向建库、cfDNA的高通量测序建库、快速去宿主核酸的宏基因组测序技术。

3) Point-of-Care核酸检测技术:开发高灵敏度快速核酸等温扩增方法和肉眼可见的显色技术,实现不依赖复杂仪器的快速现场高灵敏度病原体快检。

地址:清华大学生物技术馆3-209


IBM First Plateau Invention Achievement Award, IBM T J Watson Research, 2013年

Harry M. Showman Prize, University of California, Los Angeles 2011年

Graduate Student Silver Award, Material Research Society (MRS) Fall Meeting 2010年

1. B. Wang, Y. Sun, H. Ding, X. Zhao, L. Zhang, J.W.Bai*, K. Liu*, “Bioelectronics-Related 2D Materials Beyond Graphene: Fundamentals, Properties, and Applications”,Advanced Functional Materials (2020), 2003732.

2. R.Tian*, Y. Li, J.W.Bai*, “Hierarchical assembled nanomaterial paper based analytical devices for simultaneously electrochemical detection of microRNAs”, Analytica Chimica Acta (2019), 1058, 89.

3. R. Tian, W. Ning, M. Chen, C. Zhang, Q. Li*, J.W.Bai*, “High performance electrochemical biosensor based on 3D nitrogen-doped reduced graphene oxide electrode and tetrahedra DNA nanostructure”, Talanta (2019), 194, 273.

4. J. W. Bai†, D. Wang†, S.W. Nam, H. Peng, R. Bruce, L. Gignac, M. Brink, E. Kratschmer, S. Rossnagel, P. Waggoner, K. Reuter, C. Wang, Y. Astier, V. Balagurusamy, B. Luan, Y. Kwark , E. Joseph, M. Guillorn, S. Polonsky, A. Royyuru, S. Papa Rao, G. Stolovitzky, “Fabrication of sub-20nm nanopore arrays in membranes with embedded metal electrodes at wafer scales”, Nanoscale (2014), 6, 8900.

5. R. Cheng†, J. W. Bai† (Co-author with Equal contribution), L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, X. F. Duan, “High-frequency self-aligned graphene transistors with transferred gate stacks”, Proceedings of the National Academy of Sciences of The United States of America (2012), 109, 11588.

6. J. W. Bai, L. Liao, H. Zhou, R. Chen, L. Liu, Y. Huang, X. F. Duan, “Top-gated chemical vapor deposition grown graphene transistors with current saturation”, Nano Letters (2011) 11, 2555.

7. J. W. Bai, Y. Huang, “Fabrication and electrical properties of graphene nanoribbons”, Materials Science and Engineering: R (2010) 70, 341. Invited Review

8. J. W. Bai†, R. Cheng†, F. X. Xiu, L. Liao, M. S. Wang, A. Shailos, K. L. Wang, Y. Huang, X. F. Duan, “Very large magnetoresistance in graphene nanoribbons”, Nature Nanotechnology (2010) 5, 655.

9. J. W. Bai, X. Zhong, S. Jiang, Y. Huang, X. F. Duan, “Graphene nanomesh”, Nature Nanotechnology (2010) 5, 190.

10. J. W. Bai, X. F. Duan, Y. Huang, “Rational fabrication of graphene nanoribbons with nanowire etch mask”, Nano Letters (2009) 9, 2083.

11. J. W. Bai, S. Huang, L. Wang, Y. Chen, Y. Huang, “Fluid assisted assembly of one-dimensional nanoparticle array inside inorganic nanotubes”, Journal of Materials Chemistry (2009) 19, 921.

12. J. W. Bai, Y. Qin, C. Jiang, L. M. Qi, “Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns”, Chemistry of Materials (2007) 19, 3367.

13. P. Pang, B. Ashcroft, W. Song, P. Zhang, S. Biswas, Q. Qing, J. Yang, R. Nemanich, J. W. Bai, J. Smith, K. Reuter, V. Balagurusamy, Y. Astier, G. Stolovitzky, S. Lindsay, “Fixed-gap Tunnel Junction for Reading DNA Nucleotides”, ACS Nano (2014), 8, 11994.

14. B. Luan, J. W. Bai, G. Stolovitzky, “Fabricatable nanopore sensors with an atomic thickness”, Applied Physics Letters (2013), 103, 183501.

15. L. Liao, J. W. Bai, R. Cheng, H. L. Zhou, L. X. Liu, Y. Liu, Y. Huang, X. F. Duan, “Scalable fabrication of self-aligned graphene transistors and circuits on glass”, Nano Letters (2012), 12, 2653.

16. Z. Zhong, H. Zhang, Y. Liu, J. W. Bai, L. Liao, Y. Huang, X. F. Duan, “High-capacity silicon-air battery in alkaline solution”, Chemsuschem (2012), 5, 177. L. Liu, H. Zhou, R. Cheng, Y. Chen, Y.-C. Lin, Y. Qu, J. W. Bai, I. A. Ivanov, G. Liu, Y. Huang, X. F. Duan, “A systematic study of atmospheric pressure chemical vapor deposition growth of large area monolayer graphene”, Journal of Materials Chemistry (2012), 22, 1498.

17. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. W. Bai, G. Liu, L. Liu, Y. Huang, X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene”, Nature Communication (2011), 2, 579.

18. G. Xu, C. M. Torres, J. W. Bai, J. Tang, T. Yu, Y. Huang, X. F. Duan, Y. Zhang, K. L. Wang, “Linewidth roughness in nanowire-mask-based graphene nanoribbons”, Applied Physics Letters (2011), 98, 243118.

19. Y. Qu, J. W. Bai, L. Liao, R. Cheng, Y.C. Lin, Y. Huang, T. Guo, X. F. Duan, “Synthesis and electric properties of dicobalt silicide nanobelts”, Chemical Communications (2011), 47, 1255.

20. G. Xu, C. M. Torres, J. Tang, J. W. Bai, E. Song, Y. Huang, X. F. Duan, Y. Zhang, K. L. Wang, “Edge effect on resistance scaling rules in graphene nanostructures”, Nano Letters (2011) 11, 1082.

21. L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. W. Bai, Y. Liu, K. L. Wang, Y. Huang, X. F. Duan, “High speed graphene transistor with a self-aligned nanowire gate”, Nature (2010) 467, 305.

部分专利

  1. 中国专利 一种形成薄膜的方法和应用,2021,CN109338598B;

  2. 美国专利Compositions and methods for single molecular placement on a substrate,2019,US10350570B;

  3. 美国专利 Hybrid Nanopore Sensors,2019,US10519499B;

  4. 美国专利 Bichemically activated electronic device, 2020, US10545115B;

  5. 美国专利 Methods and arrays for producing and sequencing monoclonal clusters of nucleic acid, 2020, US10619204B。