首页 > 教育 > 师资队伍 > 药学院 > 教研系列 > 正文

汪舰, PhD

长聘教授,研究员(正高),博士生导师,中组部国家万人计划领军人才、科技部中青年创新科技人才

E-mail: wangjian2012@tsinghua.edu.cn

氮杂卡宾、不对称催化、肺癌制剂、老年痴呆症

  • 个人简历

  • ​研究方向

  • 科学贡献

  • 代表性论文

汪舰教授本科毕业于安徽师范大学化学系。于2007年在美国University of New Mexico大学获得化学博士学位。同年加入美国斯克里普斯研究所开展博士后阶段研究。2009年任职于新加坡国立大学化学系。2012年底全职回清华大学药学院任教。期间,汪舰教授参与了小分子药物调控造血干细胞的定向分化以及热带传染病(黑热病)等多个新药研发项目。已申请8项美国/中国专利,成功将多个候选药物带入临床研究。另外课题组开展了独具特色的氮杂卡宾有机不对称催化方法学研究,成功合成了系列具有光学活性的手性中间体,为药物研发提供了核心技术与平台.同时课题组在神经退行疾病(阿尔兹海默症、帕金森综合症、渐冻症、血管痴呆等)以及癌症、疼痛疾病等方向开展创新药物研发。目前已在核心顶级国际期刊上发表了100多篇高质量学术论文。此外,汪舰教授还作为共同创始人创建了生物医药公司。

获奖与荣誉

国家万人计划领军人才(2020)

科技部中青年创新科技人才(2020)

德国拜耳研究员(2015和2018)

湖北省自然科学二等奖(2016)

OCF杂志特别研究员(Emerging Investigator)(2015)

欧洲杂志Natural Products Against Cancer主编(2012-2014)

Asia Core Program Lectureship(日本,2013)

新加坡国立大学(NUS) Assistant Professorship(2009)

新加坡南洋理工大学(NTU) Nanyang Assistant Professorship(2009)

课题组主页

http://wangj.med.tsinghua.edu.cn/

http://166.111.152.230/



1)创新性化学合成工具的开发:当今进入临床开发的候选新药或上市的药物中多半是小分子化学药物。开发化学小分子新药需要我们能够对hit分子进行快速的结构改造或能过创造出尽可能多的具有类药性的化学小分子库。针对此问题,本课题组围绕化学合成革新新技术(或工具)相关领域进行深入研究,并切实结合药物合成和药物化学的知识。上述研究的核心目的是为新药产品开发提供必要的理论依据和切实的技术手段。在这些领域,本课题组和美国强生(Johnson & Johnson),德国拜耳(Bayer),等跨国制药企业建立了科研合作关系。

2)针对癌症的靶向治疗:靶向治疗的出现为肿瘤的治疗开辟了新的领 域和广阔的前景,这种治疗方法可把治疗作用或药物效应尽量限定在特定的靶细胞、组织或器官内,而不影响正常细胞、 组织或器官的功能,从而提高疗效、 减少毒副作用。考虑癌症的生物学特征和药学性能关系基础上,本实验室致力于设计和评估针对非小细胞肺癌等癌症的新型靶标的靶向新药研发,以期获得具有良好的癌症治疗效果(肿瘤生长抑制、低抗药性、低副作用、防止复发和转移,等)的新型小分子药物。

3)氮杂卡宾不对称催化方法学研究:结合当前热点研究方向(例如:光催化与电催化),实现领域间的交叉,拓展卡宾有机催化领域的范畴,寻找新的突破点,实现该领域的再突破。并将其与SAR研究进行有机结合,助力新药研发。

结合合成化学手段,充分考虑药物结构改造和药物合成的需求与特点,我们提出了高效,环保,节能的方式来对小分子化合物(包括先导化合物和临床试验阶段药物)进行改造或装配的策略。这一思路也充分考虑了多学科多方向的特别,结合当前学科发展的前沿,建立了多位一体的方法学。并将其应用于药物研发。上述工作必将对药物的改造和新药的研制起到重要的推动作用。

研究成果

1. 氮杂环卡宾有机不对称催化对醛实现多位点、选择性的官能化:以廉价易得的醛为基础化工原料,实现多位点、选择性的官能化是构筑新颖手性片段最直接、高效的方法之一。同时这些片段是各种高附加值化学产品或药物的前体,具有重要的商业价值。申请人通过改造卡宾催化剂立体结构和电子效应来调控反应的化学、区域、以及立体选择性;通过引入协同催化策略和发展合适的亲电或亲核试剂来优化反应的活化能,最终在醛的多个位置(邻位、间位、远端的碳)实现了不对称氟化、氢酰化、中环化、芳构化等官能团化反应。重点突破了对富电子烯烃加成难得瓶颈,填补了卡宾高效、多样性催化合成光学活性寡糖得空白; 发展了卡宾与路易斯酸或布朗斯特酸催化协同策略,为“卡宾催化实现远程立体控制”提供了解决思

路。

2. 金属参与的碳氢键催化活化实现杂环的高效合成:提出了基于金属插入碳氢键活化的方式,结合炔作为搭建砌块,高区域选择性的合成了一些重要的杂环骨架,为多样性合成基于该类优势核心结构的先导化合物或杂环碎片提供了重要方法依据。

3. 通过高通量筛选,并对所发现的先导化合物进行改造,成功了发现了能够诱导胚胎干细胞定向分化和控制造血干细胞体外扩增的Lead小分子。该两个项目已经分别进入了不同的临床实验阶段,将对干细胞再生药物的研究起到重要推动作用。

4.基于“遗忘机制”开发治疗老年痴呆症新药:申请人团队与清华大学生命学院脑科学专家钟毅教授团队联合,结合多年对研究大脑所获得的深入理解,另辟蹊径,以遗忘机制作为研发老年痴呆症疾病的全新突破口,通过确定遗忘分子,来开发抑制加速遗忘的药物,以期从记忆层面来改善老年痴呆疾病的新药。目前老年痴呆(AD)新药开发(first-in-class类)获得CDE审批,已经在宣武,协和等医院开展临床研究。


1.Li, L. Y.; Wang, X.; Gao, R.; Zhang, B.; Liu, Y.; Zhou, J.; Fu, L.; Wang, J*; Inflammation-Triggered Supramolecular Nanoplatform for Local Dynamic Dependent Imaging-Guided Therapy of Rheumatoid Arthritis,Adv. Sci., 2022, 2105188.

2.Peng, Q.; Yan, B..; Li, F.; Lang, M.; Zhang, B.; Guo, D.; Bierer, D.; Wang, J*; Biomimetic Enantioselective Synthesis of β,β-Difluoro-α-amino Acid Derivatives,Commun. Chem., 2021, 4, 148.

3.Li, L.; Zhang, B.; Liu, Y.; Gao, R.; Zhou, J.; Fu, L.; Wang, J*; A Spontaneous Membrane-Adsorption Approach to Enhancing Second Near-Infrared Deep-Imaging-Guided Intracranial Tumor Therapy,ACS Nano, 2021, 15, 4518.

4.Yang, G. M.; Guo, D. H.; Meng, D.; Wang, J*; NHC-catalyzed Atropoenantioselective Synthesis of Axially Chiral Biaryl Amino Alcohols via a Cooperative Strategy,Nature Commun., 2019, 10, 3062.

5.Zhao, C. G;Guo, D. H.; Munkerup, K.; Huang, K. W.; Li, F. Y.; Wang, J*; Enantioselective [3+3] Atroposelective Annulation Catalyzed by N-heterocyclic Carbenes,Nature Commun., 2018, 9, 611.

6.Peng, Q. P.; Guo, D. H.; Bie, J. B.; Wang, J*; Catalytic Enantioselective Aza‐Benzoin Reactions of Aldehydes with 2H‐Azirines, Angew. Chem. Int. Ed., 2018, 57, 3761.

7.Zhang, J. W.; Wang, J*; Atropoenantioselective Redox‐Neutral Amination of Biaryl Compounds through Borrowing Hydrogen and Dynamic Kinetic Resolution, Angew. Chem. Int. Ed., 2018, 57, 465.

8.Wu, Z. J.; Wang, J*; A Tandem Dearomatization/Rearomatization Strategy: Enantioselective N-Heterocyclic Carbene-Catalyzed α-Arylation, Chem. Sci., 2019, 10, 2501.

9.Wu, J. C.; Zhao, C. G.; Wang, J*; Enantioselective Intermolecular Enamide-Aldehyde Cross-Coupling Catalyzed by Chiral N-Heterocyclic Carbenes, J. Am. Chem. Soc., 2016, 138, 4706.

2. Zhao, C. G.; Li, F. Y.; Wang, J*; N-heterocyclic Carbene Catalyzed Dynamic Kinetic Resolution of Pyranones, Angew. Chem. Int. Ed., 2016, 55, 1820.

10.Zhao, C. G.; Li, F. Y.; Wang, J*; N-heterocyclic Carbene Catalyzed Dynamic Kinetic Resolution of Pyranones, Angew. Chem. Int. Ed., 2016, 55, 1820.

11.Wu, J. C.; Xu, W. B.; Yu, Z.-X.*; Wang, J*; Ruthenium-catalyzed Formal Dehydrative [4 + 2] Cycloaddition of Enamides and Alkynes for the Synthesis of Highly Substituted Pyridines: Reaction Development and Mechanistic Study, J. Am. Chem. Soc., 2015, 137, 9489.

12.Wu, Z. J.; Li, F. Y.; Wang, J*; Intermolecular Dynamic Kinetic Resolution Cooperatively Catalyzed by an N-Heterocyclic Carbene and a Lewis Acid, Angew. Chem. Int. Ed., 2015, 54, 1629.

13.Li, F. Y.; Wu, Z. J.; Wang, J*; Oxidative Enantioselective α-Fluorination of Aliphatic Aldehydes Enabled by N-Heterocyclic Carbene Catalysis, Angew. Chem. Int. Ed., 2015, 54, 656.

14.Li, W. J.; Wang, J*; Lewis Base Catalyzed Aerobic Oxidative Intermolecular Azide-Zwitterion Cycloaddition, Angew. Chem. Int. Ed., 2014, 53, 14186.

15.Wang, L.; Huang, J. Y.; Liu, H.; Peng, S. Y.; Jiang, X.-F.*; Wang, J.* Palladium-catalyzed Oxidative Cycloaddition via C–H/N–H Activation: Access to Benzazepines, Angew. Chem. Int. Ed., 2013, 52, 1768.

16.Boitano, A. E.; Wang, J.; Romeo, R.; Bouchez, L. G.; Parker, A. E; Sutton, S. U.; Walker, J. R.; Flaveny, C. A.; Perdew, G. H; Denison, M. S.; Schultz, P. G., Cooke, M. P. Aryl Hydrocarbon Receptor Antagonists Promote the Expansion of Human Hematopoietic Stem Cells, Science 2010, 329, 1345-1348.

17.Zhu, S. T.; Wurdak, H.; Wang, J.; Lyssiotis, C. A.; Peters, E. C.; Cho, C. Y.; Wu, X.; Schultz, P. G. A Small Molecule Primes Embryonic Stem Cells for Differentiation, Cell Stem Cell, 2009, 4(5), 416-426.

18.Wang, J.; Xie, H.-X.; Li, H.; Zu, L.-S.; Wang, W. A Highly Stereoselective Hydrogen-Bond-Mediated Michael-Michael Cascade Process through Dynamic Kinetic Resolution, Angew. Chem. Int. Ed., 2008, 47, 4177.

19.Wang, J.; Li, H.; Zu, L.-S.; Wang, W. Organcatalytic Enantioselective Conjugate Additions to Enones, J. Am. Chem. Soc., 2006, 128, 12652.

20.Wang, J.; Li, H.; Xie, H.-X.; Zu, L.-S.; Shen, X.; Wang, W. Organocatalytic Enantioselective Cascade Michael-Aldol Condensation Reactions: Efficient Assembly of Densely Functionalized Chiral Cyclopentenes, Angew. Chem. Int. Ed., 2007, 46, 9050.

21.Wang, J.; Li, H.; Wang, W.; Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition Reactions of Aldehydes to Nitrostyrenes, Angew. Chem. Int. Ed., 2005, 44, 1369.


专利

1.Wang, J.; and Lang, M. “一种含氮杂环化合物及其制备方法与在抑制激酶活性中的应用”, PCTCN2017070372.

2.Wang, W.; Wang, J.; and Li, H. Organocatalysts and Methods of Use in Chemical Synthesis, EU Patent, WO2006007586 (2006).