首页 > 教育 > 师资队伍 > 生物医学工程学院 > 教研系列 > 医学影像 > 正文

田启源

E-mail: qiyuantian@tsinghua.edu.cn

  • 科研领域及主要成果

  • 代表性著作

  • 学术荣誉与奖励

  • 技术专利

田启源博士长期专注于新型人类脑成像和图像分析的方法研究,特别是弥散和功能磁共振成像、多模态影像、基于深度学习的方法,及新方法在脑疾病病理研究中的应用与临床诊疗中的转化。研究涉及生物医学成像、脑成像、脑科学、脑疾病、计算机视觉和机器学习等多前沿学科。具体研究方向包括:

(1)弥散及功能磁共振成像的信号处理、建模与分析

(2)弥散磁共振成像的生物学准确性验证

(3)基于深度学习的脑成像加速、图像计算及脑疾病诊断

(5)复杂脑微观结构成像

(6)脑网络重建、分析与应用

(7)神经外科手术导航

Li ZY, Fan Q, Bilgic B, Wang G, Polimeni JR, Huang SY,Tian Q. Diffusion MRI Data Analysis Assisted by Deep Learning Synthesized Anatomical Images.Medical Image Analysis. 2023; 102744.

Tian Q, Li Z, Fan Q, Polimeni JR, Bilgic B, Salat DH, Huang SY. SDnDTI: Self-supervised Deep Leaning-based Denoising for Diffusion Tensor MRI.NeuroImage, 2022; 119033.

Tian Q, Zaretskaya N, Fan Q, Ngamsombat C, Bilgic B, Polimeni JR, Huang SY. Improved Cortical Surface Reconstruction using Sub-millimeter Resolution MPRAGE by Image Denoising.NeuroImage, 2021; 233: 117946.

Tian Q, Bilgic B, Fan Q, Zaretskaya N, Fultz NE, Ohringer NA, Chaudhari AS, Hu Y, Ngamsombat C, Witzel T, Setsompop K, Polimeni JR, Huang SY. Improving In Vivo Human Cerebral Cortical Surface Reconstruction using Data Driven Super-resolution.Cerebral Cortex, 2021; 31 (1): 463-482.

Tian Q, Bilgic B, Fan Q, Ngamsombat C, Liao C, Hu Y, Witzel T, Setsompop K, Polimeni JR, Huang SY. DeepDTI: High-fidelity Six-direction Diffusion Tensor Imaging using Deep Learning.NeuroImage, 2020; 219: 117017.

Tian Q, Yang G, Leuze CWU, Rokem A, Edlow BL, McNab JA. Generalized Diffusion Spectrum Magnetic Resonance Imaging for Model-free Reconstruction of the Ensemble Average Propagator.NeuroImage, 2019; 189: 497-515.

Tian Q, Wintermark M, Elias WJ, Ghanouni P, Halpern CH, Henderson JM, Huss DS, Goubran M, Thaler C, Airan R, Zeineh M, Pauly KB, McNab JA. Diffusion MRI Tractography for Improved Transcranial MRI-guided Focused Ultrasound Thalamotomy Targeting for Essential Tremor.NeuroImage: Clinical, 2018; 19: 572-580.

Tian Q, Rokem A, Folkerth RD, Nummenmaa A, Fan Q, Edlow BL, McNab JA. Q-Space Truncation and Sampling in Diffusion Spectrum Imaging.Magnetic Resonance in Medicine, 2016; 76 (6): 1750-1763.

2021,独立之路奖,美国国立卫生研究院

2020,青年会士,国际医学磁共振学会

2020,青年学者奖,海外华人医学磁共振学会

2020,杰出论文奖,国际医学磁共振学会

2019,优秀论文奖,国际医学磁共振学会

2016,杰出论文奖,国际医学磁共振学会

2015,高通创新奖学金,高通公司

2011,电子工程系奖学金,斯坦福大学

Deisseroth K, Ye L, McNab JA,Tian Q. Methods for Visualization and Quantification of Fiber-like Structures. US Patent Application 16/301,086

Tian Q, Huang SY, Bilgic B, Polimeni JR. Super-resolution Anatomical Magnetic Resonance Imaging using Deep Learning for Cerebral Cortex Segmentation. US Patent Application 16/831,061

Fan Q, Huang SY,Tian Q, Ngamsombat C. Estimating Diffusion Metrics from Diffusion-weighted Magnetic Resonance Images using Optimized K-Q Space Sampling and Deep Learning. US Patent Application 17/166,734

Tian Q, Huang SY, Bilgic B. Fast Diffusion Tensor MRI using Deep Learning. WO 2020/198582A1